NURS 6512 Pharmacotherapy for Cardiovascular Disorders

Sample Answer for NURS 6512 Pharmacotherapy for Cardiovascular Disorders Included After Question

…heart disease remains the No. 1 killer in America; nearly half of all Americans have high blood pressure, high cholesterol, or smoke—some of the leading risk factors for heart disease…

—Murphy et al., 2018

Despite the high mortality rates associated with cardiovascular disorders, improved treatment options do exist that can help address those risk factors that afflict the majority of the population today.

Photo Credit: Getty Images/Science Photo Library RF

As an advanced practice nurse, it is your responsibility to recommend appropriate treatment options for patients with cardiovascular disorders. To ensure the safety and effectiveness of drug therapy, advanced practice nurses must consider aspects that might influence pharmacokinetic and pharmacodynamic processes such as medical history, other drugs currently prescribed, and individual patient factors.

Reference: Murphy, S. L., Xu, J., Kochanek, K. D., & Arias, E. (2018). Mortality in the United States, 2017. Retrieved from https://www.cdc.gov/nchs/products/databriefs/db328.htm

To Prepare

  • Review the Resources for this module and consider the impact of potential pharmacotherapeutics for cardiovascular disorders introduced in the media piece.
  • Review the case study assigned by your Instructor for this Assignment.
  • Select one the following factors: genetics, gender, ethnicity, age, or behavior factors.
  • Reflect on how the factor you selected might influence the patient’s pharmacokinetic and pharmacodynamic processes.
  • Consider how changes in the pharmacokinetic and pharmacodynamic processes might impact the patient’s recommended drug therapy.
  • Think about how you might improve the patient’s drug therapy plan based on the pharmacokinetic and pharmacodynamic changes. Reflect on whether you would modify the current drug treatment or provide an alternative treatment option for the patient.

By Day 7 of Week 2

Write a 2- to 3-page paper that addresses the following:

  • Explain how the factor you selected might influence the pharmacokinetic and pharmacodynamic processes in the patient from the case study you were assigned.
  • Describe how changes in the processes might impact the patient’s recommended drug therapy. Be specific and provide examples.
  • Explain how you might improve the patient’s drug therapy plan and explain why you would make these recommended improvements.

Reminder: The College of Nursing requires that all papers submitted include a title page, introduction, summary, and references. The College of Nursing Writing Template with Instructions provided at the Walden Writing Center offers an example of those required elements (available at https://academicguides.waldenu.edu/writingcenter/templates/general#s-lg-box-20293632). All papers submitted must use this formatting.

Submission and Grading Information

To submit your completed Assignment for review and grading, do the following:

  • Please save your Assignment using the naming convention “WK2Assgn+last name+first initial.(extension)” as the name.
  • Click the Week 2 Assignment Rubric to review the Grading Criteria for the Assignment.
  • Click the Week 2 Assignment link. You will also be able to “View Rubric” for grading criteria from this area.
  • Next, from the Attach File area, click on the Browse My Computer button. Find the document you saved as “WK2Assgn+last name+first initial.(extension)” and click Open.
  • If applicable: From the Plagiarism Tools area, click the checkbox for I agree to submit my paper(s) to the Global Reference Database.
  • Click on the Submit button to complete your submission.

A Sample Answer For the Assignment: NURS 6512 Pharmacotherapy for Cardiovascular Disorders

Title: NURS 6512 Pharmacotherapy for Cardiovascular Disorders

The patient is dealing with a major cardiovascular issue based on the case study. All the current medication prescribed to the patient needs to be reviewed for appropriate changes. Cardiovascular disease counts as a major cause of disability and leads to a cause of death globally. The statistic indicates that approximately a person dies within approximately 36 seconds in the United States due to cardiovascular disease (Benjamin et al., 2019). Therefore, cardiovascular disease is the major cause of health disparities and increases the cost of health care. It is vital to consider the patient’s lifestyle, history, and review to manage HH’s illness effectively. This paper addresses the factors that influence a patient’s pharmacokinetics and pharmacodynamics process and gives changes that impact the recommended drug therapy.

Factor Influencing Pharmacokinetic and Pharmacodynamics Process in the Patient

Based on the case study, the factor that I have selected is age, which can lead to drug toxicity and influence the pharmacokinetics of different medications. Age causes an increase in the altered metabolism and blood concentration of drugs (Giri et al., 2018). A decrease in renal function causes an alteration of drug pharmacokinetics such as glomerular filtration rate and reduces blood flow. Age-related changes that occur in a patient include physiological factors and temperature (Giri et al., 2018). The physiological factors cognition, ventricular aerial stiffness, endothelial function, and electric conduction (Rosenthal & Burchum, 2021). Most people are sensitive to antihypertensive medication due to sympathetic neuronal and baroreceptor response (Giri et al., 2018).

Glipizide is used to cure an adult with type 2 diabetes mellitus. The drug effectively promotes insulin release from the beta cells since it

NURS 6512 Pharmacotherapy for Cardiovascular Disorders
NURS 6512 Pharmacotherapy for Cardiovascular Disorders

reduces glucose output from the liver (Addul-Ghani et al., 2021). For patients with inadequate metabolic control, the combination of metformin and Glipizide helps reach the goal of HbA1c within three months (Addul-Ghani et al., 2021). Glipizide is effective since it has a short life and effect duration, thus lowering the risk of long-lasting hypoglycemia (Addul-Ghani et al., 2021). Patients taking Glipizide with thyroid hormone, estrogen-containing contraceptives, thiazide diuretics, nicotinic acid, and calcium channel blockers have a high potential for hyperglycemia (Rosenthal & Burchum, 2021).

Metformin effectively improves glycemic control, which takes place without inducing hypoglycemia or causing obesity, thus considered a first-line pharmacologic treatment (Shurrab & Arafa, 2020). The drug inhibits gluconeogenesis by causing a block on the mitochondrial redox shuttle, thus acting in the liver (Shurrab & Arafa, 2020). Metformin is identified to cause gastrointestinal adverse effects such as nausea, diarrhea, and vomiting (Shurrab & Arafa, 2020). FDA labels warn against prescribing Metformin drug therapy for patients with acute heart failure when supplemented with hypoxemia and hypoperfusion.

Hydrochlorothiazide (HCTZ) is used to treat hypertension since it is a thiazide-type diuretic (Rosenthal & Burchum, 2021). The drug inhibits the sodium chloride co-transparent system leading to the distal of the convoluted tubules (Rosenthal & Burchum, 2021). A lower level of blood pressure is achieved due to the diuretic action. However, studies have declined hydrochloride as an ACE inhibitor for reducing the risk of cardiovascular disease (Handelsman et al., 2020). The adverse effect caused by the use of hydrochlorothiazide is the development of hyperglycemia (Rosenthal & Burchum, 2021). The drug therapy effectively manages latent diabetes and causes an increase in triglycerides and cholesterol (Rosenthal & Burchum, 2021). The combination of HCTZ with calcium channel blockers and ACE inhibitors effectively reduces hypertension.

Click here to ORDER an A++ paper from our Verified MASTERS and DOCTORATE WRITERS: NURS 6512 Pharmacotherapy for Cardiovascular Disorders

Atenolol acts as a beta blocker that causes an effect on blood circulation and the heart. The drug helps treat hypertension and angina, effectively bind the beta-1 adrenergic receptors in the vascular smooth muscle (Habib et al., 2021). This affects the chronotropic actions of the endogenous catecholamine. The process leads to a decrease in myocardial contractility heart rate and lowers blood pressure. The drug therapy is limited for a patient with moderate severely impaired renal (Habib et al., 2021). The side effects of Atenolol use include causing weight gain and heart failure for some patients.

Hydralazine drug causes direct relaxation of the arteriolar smooth muscle. This is considered an antihypertensive agent and phthalazine derivative (Sangshetti et al., 2019). A reverse antihypertensive effect is likely to be experienced due to vasodilation (Sangshetti et al., 2019). This is caused by hydralazine followed by a reflex sympathetic response. The drug therapy is effective when combined with isosorbide dinitrate in reducing hypertension. The side effects of using hydralazine cause a lupus-like syndrome in rare cases. However, the drug leads to discontinuation of the drug (Sangshetti et al., 2019).

Simvastatin is used as an adjunct to diet thus used as an oral HMG-CoA reductase inhibitor. A patient using Simvastatin gain a reduction in dyslipidemia and a decline in cholesterol production (Di Bello et al., 2020). The cholesterol synthesis is catalyzed by converting HMC-CoA to mevalonate, completely inhibited by hepatic hydroxymethyl-glutaryl coenzyme A (HMG-CoA) reductase (Di Bello et al., 2020). The agent effectively reduces the lipoprotein level and lowers the plasma cholesterol. The side effect of using Simvastatin 80mg is that it has a higher risk of possible rhabdomyolysis and myopathy after 12 months of use (Di Bello et al., 2020).

Verapamil is used to treat hypertension, atrial tachyarrhythmia, and angina pectoris and is classified in the class of calcium channel blockers. It helps block the cardiac muscle cells and influx of calcium ions into the vascular smooth muscle in the membrane depolarization (Savage et al., 2020). The action helps in decreasing the oxygen consumption and the cardiac work. The drug is also effective in causing a reduction in atrial–ventricular conduction. This helps in controlling the supraventricular tachyarrhythmia (Savage et al., 2020). The side effect of using verapamil include causing transient serum enzyme elevation to be mild to moderate and the liver injury from mild (Savage et al., 2020).

Improving Drug Therapy Plan

The patient can experience congestive heart failure (CHF) when there is a combination of verapamil, atenolol, and Hydrochlorothiazide (HCTZ) (Rosenthal & Burchum, 2021). For effective control of stroke, it is important to control blood pressure. It is important to avoid duplicitous therapy, which causes harm. Interaction between verapamil and Simvastatin leads to an increase in the blood level of Simvastatin (Di Bello et al., 2020). The act leads to kidney damage and rhabdomyolysis and causing liver damage. Atenolol can cause an increase in the duration of hypoglycemic symptoms along with Glipizide (Habib et al., 2021).

Conclusion

It is important to ensure that a patient is educated on the need to consider frequent blood glucose monitoring. This is a result of atenolol due to the symptom of hypoglycemia. The symptom of hypoglycemia include heart palpitations, rapid heartbeat, and tremor (Rosenthal & Burchum, 2021).

References

Abdul-Ghani, M., Puckett, C., Adams, J., Khattab, A., Baskoy, G., Cersosimo, E., … & DeFronzo, R. A. (2021). Durability of triple combination therapy versus stepwise addition therapy in patients with new-onset T2DM: 3-year follow-up of EDICT. Diabetes care44(2), 433-439. https://diabetesjournals.org/care/article-abstract/44/2/433/35501

Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., … & American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2019). Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation139(10), e56-e528. https://www.ahajournals.org/doi/abs/10.1161/cir.0000000000000659

Di Bello, E., Zwergel, C., Mai, A., & Valente, S. (2020). The innovative potential of statins in cancer: new targets for new therapies. Frontiers in Chemistry8, 516. https://www.frontiersin.org/articles/10.3389/fchem.2020.00516/full

Giri, B., Dey, S., Das, T., Sarkar, M., Banerjee, J., & Dash, S. K. (2018). Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomedicine & Pharmacotherapy107, 306-328. https://www.sciencedirect.com/science/article/pii/S0753332218322406

Habib, S., Alam, M., Mustafa, M., & Verma, A. K(2021). Role of Beta-Blockers as an Effective Cardio protective Agents, an insight in to Tackling with Cardiovascular Diseases (CVDs) and Hypertension. https://www.researchgate.net/profile/Abhishek-Kumar-Verma-2/publication/354694288

Handelsman, Y., Jellinger, P. S., Guerin, C. K., Bloomgarden, Z. T., Brinton, E. A., Budoff, M. J., … & Wyne, K. L. (2020). Consensus statement by the American association of clinical Endocrinologists and American College of Endocrinology on the management of dyslipidemia and prevention of cardiovascular disease algorithm–2020 executive summary. Endocrine Practice26(10), 1196-1224. https://www.sciencedirect.com/science/article/pii/S1530891X20482047

Rosenthal, L. D., & Burchum, J. R. (2021). Lehne’s Pharmacotherapeutics for Advanced Practice Nurses and Physician Assistants. Elsevier.

Sangshetti, J., Pathan, S. K., Patil, R., Ansari, S. A., Chhajed, S., Arote, R., & Shinde, D. B. (2019). Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorganic & Medicinal Chemistry27(18), 3979-3997. https://www.sciencedirect.com/science/article/pii/S0968089619310193

Savage, R. D., Visentin, J. D., Bronskill, S. E., Wang, X., Gruneir, A., Giannakeas, V., … & McCarthy, L. M. (2020). Evaluation of a common prescribing cascade of calcium channel blockers and diuretics in older adults with hypertension. JAMA Internal Medicine180(5), 643-651. https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2761272

Shurrab, N. T., & Arafa, E. S. A. (2020). Metformin: A review of its therapeutic efficacy and adverse effects. Obesity Medicine17, 100186. https://www.sciencedirect.com/science/article/pii/S2451847620300063

A Sample Answer 2 For the Assignment: NURS 6512 Pharmacotherapy for Cardiovascular Disorders

Title: NURS 6512 Pharmacotherapy for Cardiovascular Disorders

Cardiovascular disorders represent a spectrum of life-threatening medical disorders affecting the cardiovascular system. These include but are not limited to hypertension, heart failure, stroke, ischemic heart disease, and coronary artery diseases. These diversified arrays of conditions remain the second most leading cause of mortality in the United States of about 1 in every 4 deaths (Olvera Lopez et al., 2021). In this assignment, a factor influencing pharmacodynamic and pharmacokinetics will be selected and explored extensively in relation to a case study involving AO, a patient diagnosed with hypertension and hyperlipidemia with a history of obesity.

Effects of Age on the Pharmacodynamic and Pharmacokinetics Processes

A couple of factors influence pharmacodynamic and pharmacokinetic processes. For instance, age, genetics, behaviors, and ethnicity. Aging is designated by accelerated impairment of functional capabilities of entire organ systems, diminished homeostatic mechanisms, and altered reaction to receptor stimulation (Peeters et al., 2019). The aforementioned processes influence the pharmacodynamic and pharmacokinetic processes with the resultant need for dose adjustments or rather contraindication of some pharmacologic agents in the elderly. Additionally, aging is associated with a reduction in the first-pass metabolism attributed to a decrease in the liver bulk and blood flow. Similarly, impaired hepatic and renal functions correlated with aging significantly hinder the renal and hepatic clearance of a majority of drugs (Laurent, 2017). Consequently, in the case of AO, 86-year-old taking atenolol, simvastatin, sertraline, hydralazine, and doxazosin, the bioavailability of the mentioned drugs will increase.

According to Peeters et al. (2019), aging is further associated with a reduction in cumulative muscle mass and total body water but with an increase in the percentage of body fat. As a result, the volume distribution of lipid-soluble drugs increases while it decreases for non-lipid soluble drugs. Pharmacodynamically, on the other hand, aging is accompanied by altered sensitivity to drugs with a general increase in sensitivity to drugs in the elderly. Ultimately, adjustments of the doses AO’s drug regimen are critical to avoid adverse side effects or rather toxicity.

Impact of Changes in Process on the Patient’s Recommended Drug Therapy

Atenolol which is indicated for therapeutic management of hypertension is largely metabolized by the liver and excreted by the kidney. Subsequently, the dose will be adjusted depending on the renal and liver function. Similarly, geriatric patients have decreased sensitivity to beta-blockers due to increased total peripheral resistance, and reduced cardiac and pulmonary function (Khalil & Zeltser, 2021). Therefore, the beta-blocker should be substituted with another class of antihypertensive. On the other hand, doxazosin also metabolized by the liver is associated with hypotension when utilized in the geriatric population and thus will necessitate periodic monitoring of vital signs and dose adjustments (Khalil & Zeltser, 2021). Sertraline should be avoided in adolescents and children due to an increased risk of suicidal ideation. It is a good agent in the elderly as it reduces stress and depression which significantly perpetuate hypertension. It is a vital medication in the elderly as it reduces symptoms of BPH. Hydralazine dose should be adjusted depending on the individualized rate of acetylation. Lastly, the safety profile of simvastatin, atenolol, and doxazosin has not been established in children less than 10 years.

How I would Improve the Patient’s Drug Plan

Patient AO is a geriatric hypertensive hyperlipidemic patient and at risk of BPH, therefore being on doxazosin is crucial. This medication reduces the blood pressure and symptoms of BPH in addition to decreasing LDL and cholesterol (Redon & Redon, 2019). However, this therapeutic agent is associated with orthostatic hypotension and edema especially in the elderly. Consequently, I will periodically monitor the vital signs, weight, edema, and liver function tests of AO and reduce the dose accordingly. I will gradually taper down the dose while simultaneously monitoring the adverse effects. Atenolol is relatively contraindicated in the elderly and therefore I will consider substituting it with a first-line antihypertensive such as hydrochlorothiazide(Redon & Redon, 2019). AO has gained 9 pounds which might be due to edema associated with atenolol and doxazosin, therefore, a diuretic such as hydrochlorothiazide when deployed will control the blood pressure as well as edema (Redon & Redon, 2019).

The doses of sertraline, hydralazine, and simvastatin will remain unadjusted. However, the patient will be assessed periodically and educated on the importance of taking medications as advised by the healthcare provider. Similarly, I will educate the patient on the side effects associated with these medications such as sexual dysfunction, fatigue, diarrhea, and drowsiness, and the need to consult the care provider if the symptoms persist or become intolerable (Redon & Redon, 2019). Additionally, I will advise and educate the patient on lifestyle modification and behavior changes to help control hypertension such as diet modification, smoking, and alcohol cessation, and regular physical activity. Finally, I will follow up with the patient at the medical outpatient clinic.

Conclusion

Pharmacological treatment alongside supportive measures form the mainstay treatment in patients with cardiovascular disorders. The drug regimen is largely affected by a variety of factors such as age, gender, ethnicity, and genetics which affect the pharmacodynamic and pharmacokinetic process. It is crucial for individualization of the drug regimen based on a critical evaluation of the above processes.

References

Khalil, H., & Zeltser, R. (2021). Antihypertensive Medications. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK554579/

Laurent, S. (2017). Antihypertensive drugs. Pharmacological Research: The Official Journal of the Italian Pharmacological Society124, 116–125. https://doi.org/10.1016/j.phrs.2017.07.026

Olvera Lopez, E., Ballard, B. D., & Jan, A. (2021). Cardiovascular Disease. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK535419/

Peeters, L. E. J., Kester, M. P., Feyz, L., Van Den Bemt, P. M. L. A., Koch, B. C. P., Van Gelder, T., & Versmissen, J. (2019). Pharmacokinetic and pharmacodynamic considerations in the treatment of the elderly patient with hypertension. Expert Opinion on Drug Metabolism & Toxicology15(4), 287–297. https://doi.org/10.1080/17425255.2019.1588249

Redon, J., & Redon, P. (2019). Evidence from clinical trials and use of antihypertensive drugs in children and adolescents. In Updates in Hypertension and Cardiovascular Protection (pp. 263–277). Springer International Publishing. https://doi.org/10.1007/978-3-030-18167-3_17