** Boost your Grades with us today! **

## BIO 500 W7 Discussion Question 1

*BIO 500 W7 Discussion Question 1*

As a health care professional in public health, describe some examples that demonstrate the importance of interaction of variables in a two-way analysis of variance.

In statistics, an **interaction** may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable (that is, when effects of the two causes are not additive).^{[1]}^{[2]} Although commonly thought of in terms of causal relationships, the concept of an interaction can also describe non-causal associations. Interactions are often considered in the context of regression analyses or factorial experiments.

The presence of interactions can have important implications for the interpretation of statistical models. If two variables of interest interact, the relationship between each of the interacting variables and a third “dependent variable” depends on the value of the other interacting variable. In practice, this makes it more difficult to predict the consequences of changing the value of a variable, particularly if the variables it interacts with are hard to measure or difficult to control.

The notion of “interaction” is closely related to that of moderation that is common in social and health science research: the interaction between an explanatory variable and an environmental variable suggests that the effect of the explanatory variable has been moderated or modified by the environmental variable.

An **interaction variable** or **interaction feature** is a variable constructed from an original set of variables to try to represent either all of the interaction present or some part of it. In exploratory statistical analyses it is common to use products of original variables as the basis of testing whether interaction is present with the possibility of substituting other more realistic interaction variables at a later stage. When there are more than two explanatory variables, several interaction variables are constructed, with pairwise-products representing pairwise-interactions and higher order products representing higher order interactions.

Sometimes the interacting variables are categorical variables rather than real numbers and the study might then be dealt with as an analysis of variance problem. For example, members of a population may be classified by religion and by occupation. If one wishes to predict a person’s height based only on the person’s religion and occupation, a simple *additive* model, i.e., a model without interaction, would add to an overall average height an adjustment for a particular religion and another for a particular occupation. A model with interaction, unlike an additive model, could add a further adjustment for the “interaction” between that religion and that occupation. This example may cause one to suspect that the word *interaction* is something of a misnomer.

Statistically, the presence of an interaction between categorical variables is generally tested using a form of analysis of variance (ANOVA). If one or more of the variables is continuous in nature, however, it would typically be tested using moderated multiple regression.^{[9]} This is so-called because a moderator is a variable that affects the strength of a relationship between two other variables.